

Rolf Johansson

Research Project: FUSE

FUnctional Safety and Evolvable architectures for autonomy

Partners: SP, Volvo Cars, KTH, Semcon, Qamcom, Comentor

http://www.fuse-project.se/ rolf.johansson@sp.se

We need to make sure that autonomous driving is safe (today we don't)

Three Dimensions of Autonomy

Towards More Autonomy in More

What happens to Functional Safety when passing the dotted line?

- How to define it? (Lacking definitions in ISO 26262)
- How to achieve it? (Demand for architectural patterns, and division of responsibility)
- How to prove it? (Demand for new compositional safety arguing)

FUSE

^V ISO26262 - Automated Driving and Autonomous Vehicles

- Two types of reasons why ISO26262 becomes problematic
 - Things are (much) more complicated
 - Extremely complex functionalities
 - Architectures much more complex
 - Things are fundamentally different
 - Manual driver not in the loop

Focus of FUSE

- Functional safety
- Scalable Architectures
- New methods for development and safety analysis

for Autonomy

Well complements other efforts focusing on: sensing, estimation, control strategies and algorithms, HMI, ...

FUSE Contributions

- Identification of new types of ٠ Hazards to consider
- Methodology framework for ٠ Hazard Analysis and Risk Assessment
- Guidelines for detailed ٠ Hazardous Events including explicit tolerance margins

- refinement of safety requirements
- Patterns for dividing safety requirements on FSC top level
- Formulation of the functional safety ٠ problem for a sensor fusion block
- Disarming of the Trolley problem paradox

Functional Safety Concept Architecture

FUSE Contributions

"Do you know that your self-driving car is programmed to choose whom to kill"

Functional Safety Concept Architecture

٠

٠

٠

FUSE Contributions

Example: DC assumes maximum brake retardation $a_b = 7 m/s^2$ to apply if object detected in next moment

Example: DC assumes maximum brake retardation $a_b = 7 m/s^2$ to apply if object detected in next moment

 Disarming of the Trolley problem paradox

All results will be presented: September 23rd Volvo Cars, PVH

explicit tolerance margins